Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(10-methoxybenzo[*h*]quinolinium) tetrachloridozinc

Zhenming Dong^a and Bo Liu^{b*}

^aSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China, and ^bInstitute of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China Correspondence e-mail: liubo4314@yahoo.com.cn

Received 16 December 2011; accepted 23 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.011 Å; *R* factor = 0.073; *wR* factor = 0.220; data-to-parameter ratio = 12.4.

In the title compound, $(C_{14}H_{12}NO)_2[ZnCl_4]$, the benzo[*h*]quinolinium groups are approximately planar, with maximum deviations of 0.049 (8) and 0.056 (9) Å. The methoxy groups are stabilized by intramolecular N-H···O hydrogen bonds. The structure also exhibits weak intermolecular N-H···Cl hydrogen bonds between the cations and anions. π - π interactions are present between the pyridinium and benzene rings [centroid-centroid distances = 3.640 (4), 3.728 (5) and 3.628 (5) Å].

Related literature

For background to quinoline derivatives, see: Kouznetsov *et al.* (2005). For related complexes, see: Guo *et al.* (2007).

Experimental

Crystal data (C₁₄H₁₂NO)₂[ZnCl₄]

 $M_r = 627.66$

Triclinic, $P\overline{1}$	V = 1340.4 (4) Å ³
a = 8.3846 (15) Å	Z = 2
b = 9.6352 (18) Å	Mo $K\alpha$ radiation
c = 18.348 (3) Å	$\mu = 1.35 \text{ mm}^{-1}$
$\alpha = 91.810 \ (3)^{\circ}$	T = 293 K
$\beta = 92.508 \ (3)^{\circ}$	$0.30 \times 0.20 \times 0.20$ mm
$\gamma = 114.967 \ (3)^{\circ}$	

Data collection

Bruker APEX CCD diffractometer	5013 measured reflections
Absorption correction: multi-scan	4177 independent reflections
(SADABS; Sheldrick, 1996)	3432 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.688, \ T_{\max} = 0.775$	$R_{\rm int} = 0.028$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.073$	337 parameters
$wR(F^2) = 0.220$	H-atom parameters constrained
S = 1.18	$\Delta \rho_{\rm max} = 0.92 \text{ e} \text{ Å}^{-3}$
4177 reflections	$\Delta \rho_{\rm min} = -0.85 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O1	0.86	1.95	2.612 (7)	133
$N1 - H1 \cdot \cdot \cdot Cl1^i$	0.86	2.68	3.319 (6)	132
$N2-H2\cdots O2$	0.86	1.93	2.598 (7)	134
$N2 - H2 \cdot \cdot \cdot Cl2^{ii}$	0.86	2.84	3.472 (6)	132

Symmetry codes: (i) x, y + 1, z; (ii) x + 1, y, z.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to the National Natural Science Foundation of China (grant No. 21072019) for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2499).

References

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Guo, Z., Dong, Z., Zhu, R., Jin, S. & Liu, B. (2007). Spectrochim. Acta Part A, 68, 337–340.
- Kouznetsov, V. V., Méndez, L. Y. V. & Gómez, C. M. M. (2005). Curr. Org. Chem. 9, 141–161.
- Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A**64**, 112–122.

Acta Cryst. (2012). E68, m131 [doi:10.1107/S1600536811055462]

Bis(10-methoxybenzo[h]quinolinium) tetrachloridozinc

Z. Dong and B. Liu

Comment

Quinoline derivatives represent a major class of heterocycles, and a number of preparations have been known since the late 1800s (Kouznetsov *et al.*, 2005). The quinoline ring system occurs in various natural products, especially in alkaloids (Kouznetsov *et al.*, 2005). In the course of exploring new quinoline complexes (Guo *et al.*, 2007), we obtained the title compound and the synthesis and structure are reported here.

In the title compound (Fig. 1), the benzo[*h*]quinolinium groups are planar, with maximum deviations from the average planes of 0.049 (8) and 0.056 (9) Å, respectively. The methoxy groups are stabilized by intramolecular N—H···O hydrogen bonds (Table 1). The structure also exhibits week intermolecular N—H···Cl hydrogen bonds between the cations and anions. π – π interactions are present between the pyridinium and benzene rings [centroid–centroid distances = 3.640 (4), 3.728 (5) and 3.628 (5) Å].

Experimental

10-Methoxybenzo[h]quinoline (0.30 g, 1.43 mmol) was dissolved in THF (20 ml) and ZnCl₂ (0.20 g, 1.48 mmol) was added. The mixture was heated with stirring at reflux temperature for 8 h, then cooled to 333 K and filtered. The filtrate was condenced to get yellow crystals suitable for X-ray analysis.

Refinement

All H atoms were placed in geometrically calculated positions and refined using a riding model, with C—H = 0.93 (aromatic) and 0.96 (methyl) and N—H = 0.86 Å and with $U_{iso}(H) = 1.2(1.5 \text{ for methyl})U_{eq}(C, N)$.

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Bis(10-methoxybenzo[h]quinolinium) tetrachloridozinc

Crystal data $(C_{14}H_{12}NO)_2[ZnCl_4]$ $M_r = 627.66$

Z = 2F(000) = 640

Triclinic, $P\overline{1}$
Hall symbol: -P 1
<i>a</i> = 8.3846 (15) Å
b = 9.6352 (18) Å
c = 18.348 (3) Å
$\alpha = 91.810 (3)^{\circ}$
$\beta = 92.508 (3)^{\circ}$
γ = 114.967 (3)°
V = 1340.4 (4) Å ³

Data collection

Bruker APEX CCD diffractometer	4177 independent reflections
Radiation source: fine-focus sealed tube	3432 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.028$
ϕ and ω scans	$\theta_{\text{max}} = 24.3^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.688, \ T_{\max} = 0.775$	$k = -11 \rightarrow 5$
5013 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.073$	H-atom parameters constrained
$wR(F^2) = 0.220$	$w = 1/[\sigma^2(F_o^2) + (0.118P)^2 + 1.3115P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.18	$(\Delta/\sigma)_{\rm max} < 0.001$
4177 reflections	$\Delta \rho_{max} = 0.92 \text{ e } \text{\AA}^{-3}$
337 parameters	$\Delta \rho_{\rm min} = -0.85 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	E. dia dia mandri 0.007 (5)

 $D_{\rm x} = 1.555 {\rm Mg m}^{-3}$

 $0.30 \times 0.20 \times 0.20 \text{ mm}$

 $\theta = 2.2-27.5^{\circ}$ $\mu = 1.35 \text{ mm}^{-1}$ T = 293 KBlock, yellow

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 2730 reflections

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.027 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 .

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.65848 (11)	0.46816 (9)	0.25386 (4)	0.0402 (4)
C11	0.4662 (3)	0.3566 (2)	0.34307 (9)	0.0479 (5)
C12	0.5032 (3)	0.5538 (2)	0.17408 (10)	0.0491 (5)
C13	0.7041 (4)	0.2815 (3)	0.19234 (12)	0.0686 (7)
Cl4	0.9008 (3)	0.6651 (3)	0.30484 (12)	0.0639 (6)
01	0.2911 (7)	1.1282 (5)	0.4863 (3)	0.0443 (12)
02	1.2012 (6)	0.4167 (5)	0.0191 (3)	0.0447 (12)
N1	0.3863 (7)	0.9990 (6)	0.3799 (3)	0.0362 (13)
H1	0.3811	1.0809	0.3972	0.043*
N2	1.1219 (7)	0.2271 (6)	0.1233 (3)	0.0403 (14)
H2	1.1914	0.3149	0.1088	0.048*
C7	0.2315 (8)	0.9970 (7)	0.5249 (4)	0.0339 (15)
C11	0.2044 (9)	0.7392 (8)	0.5306 (4)	0.0383 (16)
C19	0.8652 (9)	-0.0063 (8)	0.1046 (4)	0.0400 (17)
C5	0.3231 (8)	0.8696 (7)	0.4211 (4)	0.0334 (15)
C22	1.0506 (9)	0.3249 (8)	-0.0213 (4)	0.0371 (16)
C4	0.3342 (9)	0.7386 (7)	0.3914 (4)	0.0367 (16)
C6	0.2526 (8)	0.8717 (7)	0.4925 (3)	0.0307 (14)
C20	0.9774 (8)	0.1375 (7)	0.0789 (4)	0.0322 (15)
C18	0.9075 (10)	-0.0513 (8)	0.1711 (4)	0.0471 (19)
H18	0.8338	-0.1454	0.1883	0.056*
C1	0.4544 (10)	1.0034 (9)	0.3153 (4)	0.0453 (18)
H1A	0.4953	1.0933	0.2903	0.054*
C13	0.2790 (10)	0.6069 (8)	0.4329 (5)	0.0493 (19)
H13	0.2863	0.5195	0.4136	0.059*
C21	0.9408 (8)	0.1852 (8)	0.0091 (4)	0.0348 (15)
C26	0.7838 (9)	0.0852 (8)	-0.0321 (4)	0.0418 (17)
C10	0.1336 (10)	0.7295 (9)	0.5993 (4)	0.0486 (18)
H10	0.1017	0.6412	0.6251	0.058*
C3	0.4010 (10)	0.7407 (9)	0.3237 (4)	0.0468 (18)
H3	0.4039	0.6521	0.3035	0.056*
C8	0.1616 (10)	0.9881 (8)	0.5903 (4)	0.0447 (18)
H8	0.1463	1.0710	0.6106	0.054*
C9	0.1130 (11)	0.8546 (10)	0.6269 (4)	0.058 (2)
Н9	0.0645	0.8492	0.6719	0.070*
C17	1.0585 (11)	0.0437 (10)	0.2115 (4)	0.055 (2)
H17	1.0911	0.0117	0.2546	0.066*
C2	0.4640 (10)	0.8740 (9)	0.2854 (4)	0.0488 (19)
H2A	0.5118	0.8758	0.2405	0.059*
C14	0.2706 (11)	1.2609 (8)	0.5156 (4)	0.0487 (19)
H14A	0.1477	1.2350	0.5198	0.073*
H14B	0.3188	1.3432	0.4834	0.073*

|--|

0.3318	1.2922	0.5629	0.073*
1.3189 (10)	0.5596 (8)	-0.0091 (4)	0.0451 (17)
1.3556	0.5398	-0.0556	0.068*
1.4203	0.6093	0.0243	0.068*
1.2591	0.6247	-0.0149	0.068*
0.2156 (10)	0.6040 (8)	0.5000 (4)	0.0455 (18)
0.1797	0.5156	0.5260	0.055*
1.1615 (10)	0.1866 (9)	0.1877 (4)	0.0491 (19)
1.2586	0.2545	0.2167	0.059*
0.7424 (10)	0.1275 (9)	-0.1000 (4)	0.0482 (19)
0.6393	0.0628	-0.1268	0.058*
1.0090 (10)	0.3623 (9)	-0.0891 (4)	0.0457 (18)
1.0846	0.4524	-0.1090	0.055*
0.7095 (10)	-0.1024 (9)	0.0607 (5)	0.052 (2)
0.6328	-0.1964	0.0770	0.062*
0.6748 (10)	-0.0574 (9)	-0.0032 (5)	0.050 (2)
0.5735	-0.1227	-0.0309	0.060*
0.8520 (10)	0.2638 (10)	-0.1279 (4)	0.051 (2)
0.8216	0.2906	-0.1729	0.061*
	0.3318 1.3189 (10) 1.3556 1.4203 1.2591 0.2156 (10) 0.1797 1.1615 (10) 1.2586 0.7424 (10) 0.6393 1.0090 (10) 1.0846 0.7095 (10) 0.6328 0.6748 (10) 0.5735 0.8520 (10) 0.8216	0.3318 1.2922 $1.3189 (10)$ $0.5596 (8)$ 1.3556 0.5398 1.4203 0.6093 1.2591 0.6247 $0.2156 (10)$ $0.6040 (8)$ 0.1797 0.5156 $1.1615 (10)$ $0.1866 (9)$ 1.2586 0.2545 $0.7424 (10)$ $0.1275 (9)$ 0.6393 0.0628 $1.0090 (10)$ $0.3623 (9)$ 1.0846 0.4524 $0.7095 (10)$ $-0.1024 (9)$ 0.6328 -0.1964 $0.6748 (10)$ $-0.0574 (9)$ 0.5735 -0.1227 $0.8520 (10)$ $0.2638 (10)$ 0.8216 0.2906	0.3318 1.2922 0.5629 $1.3189(10)$ $0.5596(8)$ $-0.0091(4)$ 1.3556 0.5398 -0.0556 1.4203 0.6093 0.0243 1.2591 0.6247 -0.0149 $0.2156(10)$ $0.6040(8)$ $0.5000(4)$ 0.1797 0.5156 0.5260 $1.1615(10)$ $0.1866(9)$ $0.1877(4)$ 1.2586 0.2545 0.2167 $0.7424(10)$ $0.1275(9)$ $-0.1000(4)$ 0.6393 0.0628 -0.1268 $1.0090(10)$ $0.3623(9)$ $-0.0891(4)$ 1.0846 0.4524 -0.1090 $0.7095(10)$ $-0.1024(9)$ $0.0607(5)$ 0.6328 -0.1964 0.0770 $0.6748(10)$ $-0.0574(9)$ -0.0309 $0.8520(10)$ $0.2638(10)$ $-0.1279(4)$ 0.8216 0.2906 -0.1729

Atomic displacement parameters (\AA^2)

Zn1 $0.0497 (6)$ $0.0382 (5)$ $0.0349 (5)$ $0.0200 (4)$ $0.0069 (4)$ $0.0055 (3)$ Cl1 $0.0652 (12)$ $0.0475 (11)$ $0.0383 (10)$ $0.0292 (9)$ $0.0152 (8)$ $0.0111 (8)$ Cl2 $0.0621 (12)$ $0.0488 (11)$ $0.0392 (10)$ $0.0258 (9)$ $0.0029 (8)$ $0.0073 (8)$ Cl3 $0.1108 (19)$ $0.0549 (13)$ $0.0580 (13)$ $0.0491 (13)$ $0.0347 (12)$ $0.0104 (10)$ Cl4 $0.0558 (13)$ $0.0597 (14)$ $0.0627 (13)$ $0.0122 (10)$ $-0.0040 (10)$ $0.0037 (11)$ O1 $0.066 (3)$ $0.034 (3)$ $0.044 (3)$ $0.031 (2)$ $0.010 (2)$ $0.002 (2)$ O2 $0.042 (3)$ $0.032 (3)$ $0.047 (3)$ $0.002 (2)$ $0.002 (2)$ $0.004 (2)$ N1 $0.042 (3)$ $0.032 (3)$ $0.038 (3)$ $0.009 (3)$ $0.004 (3)$ $0.006 (3)$ C7 $0.030 (3)$ $0.032 (4)$ $0.042 (4)$ $0.015 (3)$ $0.002 (3)$ $0.005 (3)$ C11 $0.035 (4)$ $0.039 (4)$ $0.044 (4)$ $0.016 (3)$ $-0.004 (3)$ $0.005 (3)$ C12 $0.034 (4)$ $0.034 (4)$ $0.044 (4)$ $0.016 (3)$ $-0.002 (3)$ $-0.002 (3)$ C5 $0.034 (4)$ $0.035 (4)$ $0.044 (4)$ $0.012 (3)$ $-0.002 (3)$ $-0.002 (3)$ C4 $0.036 (4)$ $0.033 (4)$ $0.040 (4)$ $0.018 (3)$ $-0.002 (3)$ $-0.002 (3)$ C5 $0.034 (4)$ $0.034 (4)$ $0.040 (4)$ $0.013 (3)$ $-0.002 (3)$ $-0.002 (3)$ C4 </th <th></th> <th>U^{11}</th> <th>U^{22}</th> <th>U^{33}</th> <th>U^{12}</th> <th>U^{13}</th> <th>U^{23}</th>		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1 0.0652 (12) 0.0475 (11) 0.0383 (10) 0.0292 (9) 0.0152 (8) 0.0111 (8) Cl2 0.0621 (12) 0.0488 (11) 0.0392 (10) 0.0258 (9) 0.0029 (8) 0.0073 (8) Cl3 0.1108 (19) 0.0549 (13) 0.0580 (13) 0.0491 (13) 0.0347 (12) 0.0140 (10) Cl4 0.0558 (13) 0.0597 (14) 0.0627 (13) 0.0122 (10) -0.0040 (10) 0.0037 (11) O1 0.066 (3) 0.034 (3) 0.044 (3) 0.031 (2) 0.010 (2) 0.002 (2) O2 0.042 (3) 0.036 (3) 0.035 (3) 0.021 (3) 0.002 (2) 0.004 (2) N1 0.042 (3) 0.036 (3) 0.035 (3) 0.021 (3) 0.002 (3) 0.055 (3) C7 0.030 (3) 0.032 (4) 0.041 (4) 0.015 (3) 0.002 (3) 0.055 (3) C11 0.035 (4) 0.042 (4) 0.017 (3) 0.012 (3) 0.002 (3) C5 0.034 (4) 0.030 (4) 0.040 (4) 0.012 (3) -0.002 (3) C4 <t< td=""><td>Zn1</td><td>0.0497 (6)</td><td>0.0382 (5)</td><td>0.0349 (5)</td><td>0.0200 (4)</td><td>0.0069 (4)</td><td>0.0055 (3)</td></t<>	Zn1	0.0497 (6)	0.0382 (5)	0.0349 (5)	0.0200 (4)	0.0069 (4)	0.0055 (3)
Cl2 $0.0621 (12)$ $0.0488 (11)$ $0.0392 (10)$ $0.0258 (9)$ $0.0029 (8)$ $0.0073 (8)$ Cl3 $0.1108 (19)$ $0.0549 (13)$ $0.0580 (13)$ $0.0491 (13)$ $0.0347 (12)$ $0.0140 (10)$ Cl4 $0.0558 (13)$ $0.0597 (14)$ $0.0627 (13)$ $0.0122 (10)$ $-0.0040 (10)$ $0.0037 (11)$ O1 $0.066 (3)$ $0.034 (3)$ $0.044 (3)$ $0.031 (2)$ $0.010 (2)$ $0.002 (2)$ O2 $0.042 (3)$ $0.032 (3)$ $0.047 (3)$ $0.002 (2)$ $0.002 (2)$ $0.008 (2)$ N1 $0.042 (3)$ $0.036 (3)$ $0.035 (3)$ $0.021 (3)$ $0.002 (2)$ $0.004 (2)$ N2 $0.043 (3)$ $0.033 (3)$ $0.038 (3)$ $0.009 (3)$ $0.004 (3)$ $0.006 (3)$ C7 $0.030 (3)$ $0.032 (4)$ $0.042 (4)$ $0.015 (3)$ $0.002 (3)$ $0.005 (3)$ C11 $0.035 (4)$ $0.039 (4)$ $0.044 (4)$ $0.016 (3)$ $-0.004 (3)$ $0.005 (3)$ C12 $0.034 (4)$ $0.033 (4)$ $0.044 (4)$ $0.017 (3)$ $0.012 (3)$ $-0.002 (3)$ C5 $0.034 (4)$ $0.033 (4)$ $0.040 (4)$ $0.012 (3)$ $-0.004 (3)$ $-0.002 (3)$ C4 $0.036 (4)$ $0.027 (3)$ $0.036 (3)$ $0.010 (3)$ $-0.004 (3)$ $-0.002 (3)$ C5 $0.034 (4)$ $0.027 (3)$ $0.036 (3)$ $0.010 (3)$ $-0.001 (3)$ $-0.002 (3)$ C4 $0.036 (4)$ $0.027 (3)$ $0.036 (3)$ $0.010 (3)$ $-0.001 (3)$ $-0.002 (3)$ C5 $0.028 (3$	Cl1	0.0652 (12)	0.0475 (11)	0.0383 (10)	0.0292 (9)	0.0152 (8)	0.0111 (8)
Cl30.1108 (19)0.0549 (13)0.0580 (13)0.0491 (13)0.0347 (12)0.0140 (10)Cl40.0558 (13)0.0597 (14)0.0627 (13)0.0122 (10)-0.0040 (10)0.0037 (11)O10.066 (3)0.034 (3)0.044 (3)0.031 (2)0.010 (2)0.002 (2)O20.042 (3)0.032 (3)0.047 (3)0.002 (2)0.002 (2)0.008 (2)N10.042 (3)0.036 (3)0.035 (3)0.021 (3)0.002 (2)0.004 (3)N20.043 (3)0.032 (4)0.042 (4)0.015 (3)0.002 (3)0.005 (3)C70.030 (3)0.032 (4)0.041 (4)0.016 (3)-0.004 (3)0.005 (3)C190.040 (4)0.035 (4)0.040 (4)0.011 (3)0.012 (3)0.002 (3)C50.034 (4)0.033 (4)0.040 (4)0.011 (3)-0.002 (3)-0.002 (3)C40.036 (4)0.033 (4)0.046 (4)0.013 (3)-0.004 (3)-0.002 (3)C50.028 (3)0.027 (3)0.036 (3)0.010 (3)-0.001 (3)0.007 (3)C60.028 (3)0.027 (3)0.036 (3)0.011 (3)0.003 (3)-0.005 (3)C180.046 (4)0.034 (4)0.058 (5)0.013 (4)0.020 (4)0.008 (4)C10.054 (5)0.034 (4)0.042 (4)0.011 (3)0.005 (3)-0.002 (3)C130.049 (4)0.036 (4)0.042 (4)0.013 (3)-0.003 (3)-0.002 (3)C10.054 (5)0.034 (4)0.042 (4)0.013	Cl2	0.0621 (12)	0.0488 (11)	0.0392 (10)	0.0258 (9)	0.0029 (8)	0.0073 (8)
Cl4 0.0558 (13) 0.0597 (14) 0.0627 (13) 0.0122 (10) -0.0040 (10) 0.0037 (11) O1 0.066 (3) 0.034 (3) 0.044 (3) 0.031 (2) 0.010 (2) 0.002 (2) O2 0.042 (3) 0.032 (3) 0.047 (3) 0.002 (2) 0.002 (2) 0.008 (2) N1 0.042 (3) 0.036 (3) 0.035 (3) 0.021 (3) 0.002 (2) 0.004 (2) N2 0.043 (3) 0.033 (3) 0.038 (3) 0.009 (3) 0.004 (3) 0.005 (3) C7 0.030 (3) 0.032 (4) 0.042 (4) 0.015 (3) 0.002 (3) 0.005 (3) C11 0.035 (4) 0.039 (4) 0.041 (4) 0.016 (3) -0.004 (3) 0.002 (3) C5 0.034 (4) 0.030 (4) 0.040 (4) 0.017 (3) 0.012 (3) 0.002 (3) C4 0.036 (4) 0.031 (4) 0.040 (4) 0.013 (3) -0.002 (3) -0.002 (3) C5 0.034 (4) 0.030 (4) 0.040 (4) 0.013 (3) -0.002 (3) -0.002 (3)	C13	0.1108 (19)	0.0549 (13)	0.0580 (13)	0.0491 (13)	0.0347 (12)	0.0140 (10)
O1 0.066 (3) 0.034 (3) 0.044 (3) 0.031 (2) 0.010 (2) 0.002 (2) O2 0.042 (3) 0.032 (3) 0.047 (3) 0.002 (2) 0.002 (2) 0.008 (2) N1 0.042 (3) 0.036 (3) 0.035 (3) 0.021 (3) 0.002 (2) 0.004 (2) N2 0.043 (3) 0.033 (3) 0.038 (3) 0.009 (3) 0.004 (3) 0.006 (3) C7 0.030 (3) 0.032 (4) 0.042 (4) 0.015 (3) 0.002 (3) 0.005 (3) C11 0.035 (4) 0.039 (4) 0.041 (4) 0.016 (3) -0.004 (3) 0.002 (3) C19 0.040 (4) 0.035 (4) 0.048 (4) 0.017 (3) 0.012 (3) 0.002 (3) C5 0.034 (4) 0.030 (4) 0.040 (4) 0.018 (3) -0.002 (3) -0.002 (3) C4 0.036 (4) 0.027 (4) 0.046 (4) 0.013 (3) -0.004 (3) -0.002 (3) C4 0.036 (4) 0.027 (4) 0.046 (4) 0.011 (3) 0.008 (3) 0.007 (3) C4 <td>Cl4</td> <td>0.0558 (13)</td> <td>0.0597 (14)</td> <td>0.0627 (13)</td> <td>0.0122 (10)</td> <td>-0.0040 (10)</td> <td>0.0037 (11)</td>	Cl4	0.0558 (13)	0.0597 (14)	0.0627 (13)	0.0122 (10)	-0.0040 (10)	0.0037 (11)
O2 0.042 (3) 0.032 (3) 0.047 (3) 0.002 (2) 0.002 (2) 0.008 (2) N1 0.042 (3) 0.036 (3) 0.035 (3) 0.021 (3) 0.002 (2) 0.004 (2) N2 0.043 (3) 0.033 (3) 0.038 (3) 0.009 (3) 0.004 (3) 0.006 (3) C7 0.030 (3) 0.032 (4) 0.042 (4) 0.015 (3) 0.002 (3) 0.005 (3) C11 0.035 (4) 0.039 (4) 0.041 (4) 0.016 (3) -0.004 (3) 0.005 (3) C19 0.040 (4) 0.035 (4) 0.048 (4) 0.017 (3) 0.012 (3) 0.002 (3) C5 0.034 (4) 0.030 (4) 0.040 (4) 0.018 (3) -0.002 (3) -0.002 (3) C4 0.036 (4) 0.027 (4) 0.046 (4) 0.013 (3) -0.004 (3) -0.002 (3) C4 0.036 (4) 0.027 (3) 0.036 (3) 0.010 (3) -0.001 (3) 0.007 (3) C4 0.036 (4) 0.027 (3) 0.036 (3) 0.010 (3) -0.001 (3) 0.007 (3) C4 </td <td>01</td> <td>0.066 (3)</td> <td>0.034 (3)</td> <td>0.044 (3)</td> <td>0.031 (2)</td> <td>0.010 (2)</td> <td>0.002 (2)</td>	01	0.066 (3)	0.034 (3)	0.044 (3)	0.031 (2)	0.010 (2)	0.002 (2)
N1 $0.042 (3)$ $0.036 (3)$ $0.035 (3)$ $0.021 (3)$ $0.002 (2)$ $0.004 (2)$ N2 $0.043 (3)$ $0.033 (3)$ $0.038 (3)$ $0.009 (3)$ $0.004 (3)$ $0.006 (3)$ C7 $0.030 (3)$ $0.032 (4)$ $0.042 (4)$ $0.015 (3)$ $0.002 (3)$ $0.005 (3)$ C11 $0.035 (4)$ $0.039 (4)$ $0.041 (4)$ $0.016 (3)$ $-0.004 (3)$ $0.005 (3)$ C19 $0.040 (4)$ $0.035 (4)$ $0.048 (4)$ $0.017 (3)$ $0.012 (3)$ $0.002 (3)$ C5 $0.034 (4)$ $0.030 (4)$ $0.040 (4)$ $0.018 (3)$ $-0.002 (3)$ $-0.002 (3)$ C4 $0.036 (4)$ $0.027 (4)$ $0.046 (4)$ $0.013 (3)$ $-0.004 (3)$ $-0.002 (3)$ C6 $0.028 (3)$ $0.027 (3)$ $0.036 (3)$ $0.010 (3)$ $-0.001 (3)$ $0.007 (3)$ C18 $0.046 (4)$ $0.034 (4)$ $0.058 (5)$ $0.013 (4)$ $0.020 (4)$ $0.008 (4)$ C1 $0.054 (5)$ $0.048 (4)$ $0.040 (4)$ $0.027 (4)$ $0.003 (3)$ $-0.002 (3)$ C14 $0.027 (3)$ $0.037 (4)$ $0.036 (4)$ $0.011 (3)$ $0.003 (3)$ $-0.005 (3)$ C18 $0.046 (4)$ $0.034 (4)$ $0.027 (4)$ $0.011 (3)$ $0.005 (3)$ $-0.002 (3)$ C13 $0.049 (4)$ $0.036 (4)$ $0.071 (5)$ $0.026 (4)$ $0.004 (4)$ $-0.005 (3)$ C14 $0.055 (5)$ $0.042 (4)$ $0.011 (3)$ $0.005 (3)$ $-0.002 (3)$ C15 $0.027 (3)$ $0.034 (4)$ $0.022 (4)$ <td< td=""><td>O2</td><td>0.042 (3)</td><td>0.032 (3)</td><td>0.047 (3)</td><td>0.002 (2)</td><td>0.002 (2)</td><td>0.008 (2)</td></td<>	O2	0.042 (3)	0.032 (3)	0.047 (3)	0.002 (2)	0.002 (2)	0.008 (2)
N2 0.043 (3) 0.033 (3) 0.038 (3) 0.009 (3) 0.004 (3) 0.006 (3)C7 0.030 (3) 0.032 (4) 0.042 (4) 0.015 (3) 0.002 (3) 0.005 (3)C11 0.035 (4) 0.039 (4) 0.041 (4) 0.016 (3) -0.004 (3) 0.005 (3)C19 0.040 (4) 0.035 (4) 0.044 (4) 0.017 (3) 0.012 (3) -0.002 (3)C5 0.034 (4) 0.030 (4) 0.040 (4) 0.018 (3) -0.002 (3) -0.002 (3)C22 0.036 (4) 0.033 (4) 0.046 (4) 0.013 (3) -0.004 (3) -0.002 (3)C4 0.036 (4) 0.027 (4) 0.046 (4) 0.013 (3) -0.004 (3) -0.002 (3)C6 0.028 (3) 0.027 (3) 0.036 (3) 0.010 (3) -0.001 (3) 0.007 (3)C20 0.028 (3) 0.027 (3) 0.039 (4) 0.011 (3) 0.003 (3) -0.005 (3)C18 0.046 (4) 0.034 (4) 0.040 (4) 0.027 (4) 0.003 (3) 0.010 (3)C11 0.054 (5) 0.048 (4) 0.040 (4) 0.027 (4) 0.003 (3) 0.010 (3)C13 0.049 (4) 0.036 (4) 0.040 (4) 0.027 (4) 0.003 (3) -0.002 (3)C26 0.034 (4) 0.041 (4) 0.050 (4) 0.011 (3) 0.005 (3) -0.002 (3)C10 0.056 (5) 0.042 (4) 0.051 (4) 0.013 (3) -0.003 (3)C10 0.056 (5) 0.043 (4) 0.049 (4) <td>N1</td> <td>0.042 (3)</td> <td>0.036 (3)</td> <td>0.035 (3)</td> <td>0.021 (3)</td> <td>0.002 (2)</td> <td>0.004 (2)</td>	N1	0.042 (3)	0.036 (3)	0.035 (3)	0.021 (3)	0.002 (2)	0.004 (2)
C7 $0.030(3)$ $0.032(4)$ $0.042(4)$ $0.015(3)$ $0.002(3)$ $0.005(3)$ C11 $0.035(4)$ $0.039(4)$ $0.041(4)$ $0.016(3)$ $-0.004(3)$ $0.005(3)$ C19 $0.040(4)$ $0.035(4)$ $0.048(4)$ $0.017(3)$ $0.012(3)$ $0.002(3)$ C5 $0.034(4)$ $0.030(4)$ $0.040(4)$ $0.018(3)$ $-0.002(3)$ $-0.002(3)$ C22 $0.036(4)$ $0.033(4)$ $0.040(4)$ $0.012(3)$ $0.008(3)$ $0.003(3)$ C4 $0.036(4)$ $0.027(4)$ $0.046(4)$ $0.013(3)$ $-0.004(3)$ $-0.002(3)$ C6 $0.028(3)$ $0.027(3)$ $0.036(3)$ $0.010(3)$ $-0.001(3)$ $0.007(3)$ C20 $0.028(3)$ $0.027(3)$ $0.039(4)$ $0.011(3)$ $0.003(3)$ $-0.005(3)$ C18 $0.046(4)$ $0.034(4)$ $0.058(5)$ $0.013(4)$ $0.020(4)$ $0.008(4)$ C1 $0.054(5)$ $0.048(4)$ $0.071(5)$ $0.026(4)$ $0.004(4)$ $-0.006(4)$ C21 $0.027(3)$ $0.034(4)$ $0.042(4)$ $0.011(3)$ $0.005(3)$ $-0.002(3)$ C26 $0.034(4)$ $0.041(4)$ $0.050(4)$ $0.015(3)$ $0.013(3)$ $-0.002(3)$ C10 $0.056(5)$ $0.042(4)$ $0.051(4)$ $0.028(4)$ $-0.003(3)$ $-0.003(3)$ C10 $0.055(5)$ $0.043(4)$ $0.049(4)$ $0.028(4)$ $-0.003(3)$ $-0.010(4)$ C3 $0.055(5)$ $0.043(4)$ $0.049(4)$ $0.023(4)$ $0.015(4)$ $0.007(3)$ <td>N2</td> <td>0.043 (3)</td> <td>0.033 (3)</td> <td>0.038 (3)</td> <td>0.009 (3)</td> <td>0.004 (3)</td> <td>0.006 (3)</td>	N2	0.043 (3)	0.033 (3)	0.038 (3)	0.009 (3)	0.004 (3)	0.006 (3)
C11 $0.035 (4)$ $0.039 (4)$ $0.041 (4)$ $0.016 (3)$ $-0.004 (3)$ $0.005 (3)$ C19 $0.040 (4)$ $0.035 (4)$ $0.048 (4)$ $0.017 (3)$ $0.012 (3)$ $0.002 (3)$ C5 $0.034 (4)$ $0.030 (4)$ $0.040 (4)$ $0.018 (3)$ $-0.002 (3)$ $-0.002 (3)$ C22 $0.036 (4)$ $0.033 (4)$ $0.040 (4)$ $0.012 (3)$ $0.008 (3)$ $0.003 (3)$ C4 $0.036 (4)$ $0.027 (4)$ $0.046 (4)$ $0.013 (3)$ $-0.004 (3)$ $-0.002 (3)$ C6 $0.028 (3)$ $0.027 (3)$ $0.036 (3)$ $0.010 (3)$ $-0.001 (3)$ $0.007 (3)$ C20 $0.028 (3)$ $0.027 (3)$ $0.039 (4)$ $0.011 (3)$ $0.003 (3)$ $-0.005 (3)$ C11 $0.046 (4)$ $0.034 (4)$ $0.058 (5)$ $0.013 (4)$ $0.020 (4)$ $0.008 (4)$ C11 $0.054 (5)$ $0.048 (4)$ $0.040 (4)$ $0.027 (4)$ $0.003 (3)$ $-0.002 (3)$ C13 $0.049 (4)$ $0.034 (4)$ $0.040 (4)$ $0.026 (4)$ $0.004 (4)$ $-0.006 (4)$ C21 $0.027 (3)$ $0.034 (4)$ $0.042 (4)$ $0.011 (3)$ $0.005 (3)$ $-0.002 (3)$ C26 $0.034 (4)$ $0.041 (4)$ $0.050 (4)$ $0.015 (3)$ $0.013 (3)$ $-0.002 (3)$ C26 $0.034 (4)$ $0.041 (4)$ $0.050 (4)$ $0.015 (3)$ $0.013 (3)$ $-0.002 (3)$ C10 $0.056 (5)$ $0.042 (4)$ $0.051 (4)$ $0.024 (4)$ $0.002 (4)$ $0.010 (4)$ C3 $0.055 (5)$ $0.043 (4)$ <td>C7</td> <td>0.030 (3)</td> <td>0.032 (4)</td> <td>0.042 (4)</td> <td>0.015 (3)</td> <td>0.002 (3)</td> <td>0.005 (3)</td>	C7	0.030 (3)	0.032 (4)	0.042 (4)	0.015 (3)	0.002 (3)	0.005 (3)
C19 $0.040(4)$ $0.035(4)$ $0.048(4)$ $0.017(3)$ $0.012(3)$ $0.002(3)$ C5 $0.034(4)$ $0.030(4)$ $0.040(4)$ $0.018(3)$ $-0.002(3)$ $-0.002(3)$ C22 $0.036(4)$ $0.033(4)$ $0.040(4)$ $0.012(3)$ $0.008(3)$ $0.003(3)$ C4 $0.036(4)$ $0.027(4)$ $0.046(4)$ $0.013(3)$ $-0.004(3)$ $-0.002(3)$ C6 $0.028(3)$ $0.027(3)$ $0.036(3)$ $0.010(3)$ $-0.001(3)$ $0.007(3)$ C20 $0.028(3)$ $0.027(3)$ $0.039(4)$ $0.011(3)$ $0.003(3)$ $-0.005(3)$ C18 $0.046(4)$ $0.034(4)$ $0.058(5)$ $0.013(4)$ $0.020(4)$ $0.008(4)$ C1 $0.054(5)$ $0.048(4)$ $0.040(4)$ $0.027(4)$ $0.003(3)$ $0.010(3)$ C13 $0.049(4)$ $0.036(4)$ $0.042(4)$ $0.011(3)$ $0.005(3)$ $-0.002(3)$ C26 $0.034(4)$ $0.042(4)$ $0.011(3)$ $0.005(3)$ $-0.002(3)$ C26 $0.034(4)$ $0.041(4)$ $0.050(4)$ $0.015(3)$ $0.013(3)$ $-0.003(3)$ C10 $0.056(5)$ $0.042(4)$ $0.051(4)$ $0.028(4)$ $-0.003(3)$ $-0.010(4)$ C3 $0.055(5)$ $0.043(4)$ $0.049(4)$ $0.028(4)$ $-0.003(3)$ $-0.010(4)$ C8 $0.054(5)$ $0.037(4)$ $0.049(4)$ $0.023(4)$ $0.015(4)$ $0.007(3)$	C11	0.035 (4)	0.039 (4)	0.041 (4)	0.016 (3)	-0.004 (3)	0.005 (3)
C5 $0.034 (4)$ $0.030 (4)$ $0.040 (4)$ $0.018 (3)$ $-0.002 (3)$ $-0.002 (3)$ C22 $0.036 (4)$ $0.033 (4)$ $0.040 (4)$ $0.012 (3)$ $0.008 (3)$ $0.003 (3)$ C4 $0.036 (4)$ $0.027 (4)$ $0.046 (4)$ $0.013 (3)$ $-0.004 (3)$ $-0.002 (3)$ C6 $0.028 (3)$ $0.027 (3)$ $0.036 (3)$ $0.010 (3)$ $-0.001 (3)$ $0.007 (3)$ C20 $0.028 (3)$ $0.027 (3)$ $0.039 (4)$ $0.011 (3)$ $0.003 (3)$ $-0.005 (3)$ C18 $0.046 (4)$ $0.034 (4)$ $0.058 (5)$ $0.013 (4)$ $0.020 (4)$ $0.008 (4)$ C1 $0.054 (5)$ $0.048 (4)$ $0.040 (4)$ $0.027 (4)$ $0.003 (3)$ $0.010 (3)$ C13 $0.049 (4)$ $0.036 (4)$ $0.071 (5)$ $0.026 (4)$ $0.004 (4)$ $-0.006 (4)$ C21 $0.027 (3)$ $0.034 (4)$ $0.042 (4)$ $0.011 (3)$ $0.005 (3)$ $-0.002 (3)$ C26 $0.034 (4)$ $0.041 (4)$ $0.050 (4)$ $0.015 (3)$ $0.013 (3)$ $-0.003 (3)$ C10 $0.056 (5)$ $0.042 (4)$ $0.051 (4)$ $0.024 (4)$ $0.002 (4)$ $0.010 (4)$ C3 $0.055 (5)$ $0.043 (4)$ $0.049 (4)$ $0.028 (4)$ $-0.003 (3)$ $-0.010 (4)$ C8 $0.054 (5)$ $0.037 (4)$ $0.049 (4)$ $0.023 (4)$ $0.015 (4)$ $0.007 (3)$	C19	0.040 (4)	0.035 (4)	0.048 (4)	0.017 (3)	0.012 (3)	0.002 (3)
C22 $0.036(4)$ $0.033(4)$ $0.040(4)$ $0.012(3)$ $0.008(3)$ $0.003(3)$ C4 $0.036(4)$ $0.027(4)$ $0.046(4)$ $0.013(3)$ $-0.004(3)$ $-0.002(3)$ C6 $0.028(3)$ $0.027(3)$ $0.036(3)$ $0.010(3)$ $-0.001(3)$ $0.007(3)$ C20 $0.028(3)$ $0.027(3)$ $0.039(4)$ $0.011(3)$ $0.003(3)$ $-0.005(3)$ C18 $0.046(4)$ $0.034(4)$ $0.058(5)$ $0.013(4)$ $0.020(4)$ $0.008(4)$ C1 $0.054(5)$ $0.048(4)$ $0.040(4)$ $0.027(4)$ $0.003(3)$ $0.010(3)$ C13 $0.049(4)$ $0.036(4)$ $0.071(5)$ $0.026(4)$ $0.004(4)$ $-0.006(4)$ C21 $0.027(3)$ $0.034(4)$ $0.042(4)$ $0.011(3)$ $0.005(3)$ $-0.002(3)$ C26 $0.034(4)$ $0.041(4)$ $0.050(4)$ $0.015(3)$ $0.013(3)$ $-0.003(3)$ C10 $0.056(5)$ $0.042(4)$ $0.051(4)$ $0.024(4)$ $0.002(4)$ $0.010(4)$ C3 $0.055(5)$ $0.043(4)$ $0.049(4)$ $0.023(4)$ $-0.003(3)$ $-0.010(4)$ C8 $0.054(5)$ $0.037(4)$ $0.049(4)$ $0.023(4)$ $0.015(4)$ $0.007(3)$	C5	0.034 (4)	0.030 (4)	0.040 (4)	0.018 (3)	-0.002 (3)	-0.002 (3)
C4 $0.036(4)$ $0.027(4)$ $0.046(4)$ $0.013(3)$ $-0.004(3)$ $-0.002(3)$ C6 $0.028(3)$ $0.027(3)$ $0.036(3)$ $0.010(3)$ $-0.001(3)$ $0.007(3)$ C20 $0.028(3)$ $0.027(3)$ $0.039(4)$ $0.011(3)$ $0.003(3)$ $-0.005(3)$ C18 $0.046(4)$ $0.034(4)$ $0.058(5)$ $0.013(4)$ $0.020(4)$ $0.008(4)$ C1 $0.054(5)$ $0.048(4)$ $0.040(4)$ $0.027(4)$ $0.003(3)$ $0.010(3)$ C13 $0.049(4)$ $0.036(4)$ $0.071(5)$ $0.026(4)$ $0.004(4)$ $-0.006(4)$ C21 $0.027(3)$ $0.034(4)$ $0.042(4)$ $0.011(3)$ $0.005(3)$ $-0.002(3)$ C26 $0.034(4)$ $0.041(4)$ $0.050(4)$ $0.015(3)$ $0.013(3)$ $-0.003(3)$ C10 $0.056(5)$ $0.042(4)$ $0.051(4)$ $0.024(4)$ $0.002(4)$ $0.010(4)$ C3 $0.055(5)$ $0.043(4)$ $0.049(4)$ $0.023(4)$ $-0.003(3)$ $-0.010(4)$ C8 $0.054(5)$ $0.037(4)$ $0.049(4)$ $0.023(4)$ $0.015(4)$ $0.007(3)$	C22	0.036 (4)	0.033 (4)	0.040 (4)	0.012 (3)	0.008 (3)	0.003 (3)
C6 $0.028 (3)$ $0.027 (3)$ $0.036 (3)$ $0.010 (3)$ $-0.001 (3)$ $0.007 (3)$ C20 $0.028 (3)$ $0.027 (3)$ $0.039 (4)$ $0.011 (3)$ $0.003 (3)$ $-0.005 (3)$ C18 $0.046 (4)$ $0.034 (4)$ $0.058 (5)$ $0.013 (4)$ $0.020 (4)$ $0.008 (4)$ C1 $0.054 (5)$ $0.048 (4)$ $0.040 (4)$ $0.027 (4)$ $0.003 (3)$ $0.010 (3)$ C13 $0.049 (4)$ $0.036 (4)$ $0.071 (5)$ $0.026 (4)$ $0.004 (4)$ $-0.006 (4)$ C21 $0.027 (3)$ $0.034 (4)$ $0.042 (4)$ $0.011 (3)$ $0.005 (3)$ $-0.002 (3)$ C26 $0.034 (4)$ $0.041 (4)$ $0.050 (4)$ $0.015 (3)$ $0.013 (3)$ $-0.003 (3)$ C10 $0.056 (5)$ $0.042 (4)$ $0.051 (4)$ $0.024 (4)$ $0.002 (4)$ $0.010 (4)$ C3 $0.055 (5)$ $0.043 (4)$ $0.049 (4)$ $0.023 (4)$ $-0.003 (3)$ $-0.010 (4)$ C8 $0.054 (5)$ $0.037 (4)$ $0.049 (4)$ $0.023 (4)$ $0.015 (4)$ $0.007 (3)$	C4	0.036 (4)	0.027 (4)	0.046 (4)	0.013 (3)	-0.004 (3)	-0.002 (3)
C20 $0.028 (3)$ $0.027 (3)$ $0.039 (4)$ $0.011 (3)$ $0.003 (3)$ $-0.005 (3)$ C18 $0.046 (4)$ $0.034 (4)$ $0.058 (5)$ $0.013 (4)$ $0.020 (4)$ $0.008 (4)$ C1 $0.054 (5)$ $0.048 (4)$ $0.040 (4)$ $0.027 (4)$ $0.003 (3)$ $0.010 (3)$ C13 $0.049 (4)$ $0.036 (4)$ $0.071 (5)$ $0.026 (4)$ $0.004 (4)$ $-0.006 (4)$ C21 $0.027 (3)$ $0.034 (4)$ $0.042 (4)$ $0.011 (3)$ $0.005 (3)$ $-0.002 (3)$ C26 $0.034 (4)$ $0.041 (4)$ $0.050 (4)$ $0.015 (3)$ $0.013 (3)$ $-0.003 (3)$ C10 $0.056 (5)$ $0.042 (4)$ $0.051 (4)$ $0.024 (4)$ $0.002 (4)$ $0.010 (4)$ C3 $0.055 (5)$ $0.043 (4)$ $0.049 (4)$ $0.023 (4)$ $-0.003 (3)$ $-0.010 (4)$ C8 $0.054 (5)$ $0.037 (4)$ $0.049 (4)$ $0.023 (4)$ $0.015 (4)$ $0.007 (3)$	C6	0.028 (3)	0.027 (3)	0.036 (3)	0.010 (3)	-0.001 (3)	0.007 (3)
C18 0.046 (4) 0.034 (4) 0.058 (5) 0.013 (4) 0.020 (4) 0.008 (4)C1 0.054 (5) 0.048 (4) 0.040 (4) 0.027 (4) 0.003 (3) 0.010 (3)C13 0.049 (4) 0.036 (4) 0.071 (5) 0.026 (4) 0.004 (4) -0.006 (4)C21 0.027 (3) 0.034 (4) 0.042 (4) 0.011 (3) 0.005 (3) -0.002 (3)C26 0.034 (4) 0.041 (4) 0.050 (4) 0.015 (3) 0.013 (3) -0.003 (3)C10 0.056 (5) 0.042 (4) 0.051 (4) 0.024 (4) 0.002 (4) 0.010 (4)C3 0.055 (5) 0.043 (4) 0.049 (4) 0.023 (4) -0.003 (3) -0.010 (4)C8 0.054 (5) 0.037 (4) 0.049 (4) 0.023 (4) 0.015 (4) 0.007 (3)	C20	0.028 (3)	0.027 (3)	0.039 (4)	0.011 (3)	0.003 (3)	-0.005 (3)
C10.054 (5)0.048 (4)0.040 (4)0.027 (4)0.003 (3)0.010 (3)C130.049 (4)0.036 (4)0.071 (5)0.026 (4)0.004 (4)-0.006 (4)C210.027 (3)0.034 (4)0.042 (4)0.011 (3)0.005 (3)-0.002 (3)C260.034 (4)0.041 (4)0.050 (4)0.015 (3)0.013 (3)-0.003 (3)C100.056 (5)0.042 (4)0.051 (4)0.024 (4)0.002 (4)0.010 (4)C30.055 (5)0.043 (4)0.049 (4)0.023 (4)-0.003 (3)-0.010 (4)C80.054 (5)0.037 (4)0.049 (4)0.023 (4)0.015 (4)0.007 (3)	C18	0.046 (4)	0.034 (4)	0.058 (5)	0.013 (4)	0.020 (4)	0.008 (4)
C130.049 (4)0.036 (4)0.071 (5)0.026 (4)0.004 (4)-0.006 (4)C210.027 (3)0.034 (4)0.042 (4)0.011 (3)0.005 (3)-0.002 (3)C260.034 (4)0.041 (4)0.050 (4)0.015 (3)0.013 (3)-0.003 (3)C100.056 (5)0.042 (4)0.051 (4)0.024 (4)0.002 (4)0.010 (4)C30.055 (5)0.043 (4)0.049 (4)0.028 (4)-0.003 (3)-0.010 (4)C80.054 (5)0.037 (4)0.049 (4)0.023 (4)0.015 (4)0.007 (3)	C1	0.054 (5)	0.048 (4)	0.040 (4)	0.027 (4)	0.003 (3)	0.010 (3)
C21 0.027 (3) 0.034 (4) 0.042 (4) 0.011 (3) 0.005 (3) -0.002 (3) C26 0.034 (4) 0.041 (4) 0.050 (4) 0.015 (3) 0.013 (3) -0.003 (3) C10 0.056 (5) 0.042 (4) 0.051 (4) 0.024 (4) 0.002 (4) 0.010 (4) C3 0.055 (5) 0.043 (4) 0.049 (4) 0.023 (4) -0.003 (3) -0.010 (4) C8 0.054 (5) 0.037 (4) 0.049 (4) 0.023 (4) 0.015 (4) 0.007 (3)	C13	0.049 (4)	0.036 (4)	0.071 (5)	0.026 (4)	0.004 (4)	-0.006 (4)
C260.034 (4)0.041 (4)0.050 (4)0.015 (3)0.013 (3)-0.003 (3)C100.056 (5)0.042 (4)0.051 (4)0.024 (4)0.002 (4)0.010 (4)C30.055 (5)0.043 (4)0.049 (4)0.028 (4)-0.003 (3)-0.010 (4)C80.054 (5)0.037 (4)0.049 (4)0.023 (4)0.015 (4)0.007 (3)	C21	0.027 (3)	0.034 (4)	0.042 (4)	0.011 (3)	0.005 (3)	-0.002 (3)
C100.056 (5)0.042 (4)0.051 (4)0.024 (4)0.002 (4)0.010 (4)C30.055 (5)0.043 (4)0.049 (4)0.028 (4)-0.003 (3)-0.010 (4)C80.054 (5)0.037 (4)0.049 (4)0.023 (4)0.015 (4)0.007 (3)	C26	0.034 (4)	0.041 (4)	0.050 (4)	0.015 (3)	0.013 (3)	-0.003 (3)
C30.055 (5)0.043 (4)0.049 (4)0.028 (4)-0.003 (3)-0.010 (4)C80.054 (5)0.037 (4)0.049 (4)0.023 (4)0.015 (4)0.007 (3)	C10	0.056 (5)	0.042 (4)	0.051 (4)	0.024 (4)	0.002 (4)	0.010 (4)
C8 0.054 (5) 0.037 (4) 0.049 (4) 0.023 (4) 0.015 (4) 0.007 (3)	C3	0.055 (5)	0.043 (4)	0.049 (4)	0.028 (4)	-0.003 (3)	-0.010 (4)
	C8	0.054 (5)	0.037 (4)	0.049 (4)	0.023 (4)	0.015 (4)	0.007 (3)

С9	0.067 (5)	0.067 (6)	0.044 (4)	0.031 (5)	0.018 (4)	0.000 (4)
C17	0.070 (6)	0.064 (6)	0.038 (4)	0.034 (5)	0.010 (4)	0.016 (4)
C2	0.058 (5)	0.063 (5)	0.036 (4)	0.035 (4)	0.003 (3)	-0.005 (4)
C14	0.076 (5)	0.031 (4)	0.051 (4)	0.034 (4)	0.003 (4)	-0.005 (3)
C29	0.043 (4)	0.033 (4)	0.047 (4)	0.004 (3)	0.007 (3)	0.006 (3)
C12	0.054 (5)	0.037 (4)	0.054 (5)	0.027 (4)	0.003 (4)	0.007 (3)
C16	0.041 (4)	0.056 (5)	0.042 (4)	0.012 (4)	0.000 (3)	0.006 (4)
C25	0.038 (4)	0.050 (5)	0.047 (4)	0.012 (4)	-0.006 (3)	-0.004 (4)
C23	0.046 (4)	0.044 (4)	0.041 (4)	0.013 (4)	0.008 (3)	0.007 (3)
C28	0.041 (4)	0.034 (4)	0.070 (6)	0.005 (3)	0.014 (4)	0.013 (4)
C27	0.034 (4)	0.036 (4)	0.064 (5)	-0.001 (3)	0.007 (3)	-0.006 (4)
C24	0.054 (5)	0.060 (5)	0.037 (4)	0.023 (4)	-0.009 (3)	0.003 (4)

Geometric parameters (Å, °)

Zn1—Cl4	2.252 (2)	C1—H1A	0.9300
Zn1—Cl3	2.268 (2)	C13—C12	1.359 (11)
Zn1—Cl1	2.305 (2)	С13—Н13	0.9300
Zn1—Cl2	2.310 (2)	C21—C26	1.425 (10)
O1—C7	1.380 (8)	C26—C25	1.398 (11)
O1—C14	1.449 (8)	C26—C27	1.426 (11)
O2—C22	1.364 (8)	C10—C9	1.373 (11)
O2—C29	1.442 (8)	С10—Н10	0.9300
N1—C1	1.332 (9)	C3—C2	1.392 (11)
N1—C5	1.395 (9)	С3—Н3	0.9300
N1—H1	0.8600	C8—C9	1.381 (11)
N2—C16	1.327 (9)	С8—Н8	0.9300
N2—C20	1.365 (8)	С9—Н9	0.9300
N2—H2	0.8600	C17—C16	1.378 (11)
C7—C8	1.348 (10)	С17—Н17	0.9300
C7—C6	1.410 (9)	C2—H2A	0.9300
C11—C6	1.389 (9)	C14—H14A	0.9600
C11—C12	1.443 (10)	C14—H14B	0.9600
C11—C10	1.405 (10)	C14—H14C	0.9600
C19—C18	1.389 (11)	С29—Н29А	0.9600
C19—C20	1.417 (10)	С29—Н29В	0.9600
C19—C28	1.432 (11)	С29—Н29С	0.9600
C5—C4	1.399 (9)	C12—H12	0.9300
C5—C6	1.463 (9)	С16—Н16	0.9300
C22—C21	1.421 (9)	C25—C24	1.376 (11)
C22—C23	1.376 (10)	С25—Н25	0.9300
C4—C3	1.381 (10)	C23—C24	1.401 (11)
C4—C13	1.414 (10)	С23—Н23	0.9300
C20—C21	1.437 (10)	C28—C27	1.326 (12)
C18—C17	1.373 (11)	C28—H28	0.9300
C18—H18	0.9300	С27—Н27	0.9300
C1—C2	1.381 (10)	C24—H24	0.9300
Cl4—Zn1—Cl3	116.13 (10)	C21—C26—C27	118.7 (7)
Cl4—Zn1—Cl1	109.32 (8)	C9—C10—C11	117.8 (7)

Cl3—Zn1—Cl1	108.22 (8)	С9—С10—Н10	121.1
Cl4—Zn1—Cl2	111.04 (8)	C11-C10-H10	121.1
Cl3—Zn1—Cl2	107.14 (8)	C4—C3—C2	120.8 (6)
Cl1—Zn1—Cl2	104.30 (8)	С4—С3—Н3	119.6
C7—O1—C14	118.7 (5)	С2—С3—Н3	119.6
C22—O2—C29	119.1 (5)	С7—С8—С9	119.3 (7)
C1—N1—C5	123.9 (6)	С7—С8—Н8	120.3
C1—N1—H1	118.1	С9—С8—Н8	120.3
C5—N1—H1	118.1	C10—C9—C8	122.4 (7)
C16—N2—C20	123.9 (6)	С10—С9—Н9	118.8
C16—N2—H2	118.0	С8—С9—Н9	118.8
C20—N2—H2	118.0	C18—C17—C16	119.8 (7)
C8—C7—O1	123.1 (6)	С18—С17—Н17	120.1
C8—C7—C6	121.3 (6)	С16—С17—Н17	120.1
O1—C7—C6	115.6 (6)	C1—C2—C3	118.9 (7)
C6—C11—C12	121.7 (6)	С1—С2—Н2А	120.5
C6—C11—C10	120.8 (6)	C3—C2—H2A	120.5
C12—C11—C10	117.4 (7)	O1—C14—H14A	109.5
C18—C19—C20	119.9 (6)	O1—C14—H14B	109.5
C18—C19—C28	121.4 (7)	H14A—C14—H14B	109.5
C20-C19-C28	118.7 (7)	O1—C14—H14C	109.5
C4—C5—N1	116.5 (6)	H14A—C14—H14C	109.5
C4—C5—C6	121.7 (6)	H14B—C14—H14C	109.5
N1C5C6	121.7 (5)	O2—C29—H29A	109.5
O2—C22—C21	116.4 (6)	O2—C29—H29B	109.5
O2—C22—C23	122.2 (6)	H29A—C29—H29B	109.5
C21—C22—C23	121.4 (6)	O2—C29—H29C	109.5
C3—C4—C5	120.1 (7)	H29A—C29—H29C	109.5
C3—C4—C13	121.5 (6)	H29B—C29—H29C	109.5
C5—C4—C13	118.4 (6)	C13—C12—C11	119.5 (7)
C11—C6—C7	118.3 (6)	C13—C12—H12	120.3
C11—C6—C5	116.5 (6)	C11—C12—H12	120.3
C7—C6—C5	125.1 (6)	N2—C16—C17	119.8 (7)
N2—C20—C19	116.7 (6)	N2—C16—H16	120.1
N2—C20—C21	122.0 (6)	C17—C16—H16	120.1
C19—C20—C21	121.3 (6)	C24—C25—C26	120.9 (7)
C17—C18—C19	119.7 (7)	C24—C25—H25	119.6
C17—C18—H18	120.2	C26—C25—H25	119.6
C19—C18—H18	120.2	C24—C23—C22	119.6 (7)
N1—C1—C2	119.8 (7)	С24—С23—Н23	120.2
N1—C1—H1A	120.1	С22—С23—Н23	120.2
C2—C1—H1A	120.1	C27—C28—C19	119.9 (7)
C12—C13—C4	122.1 (6)	C27—C28—H28	120.0
С12—С13—Н13	118.9	C19—C28—H28	120.0
С4—С13—Н13	118.9	C28—C27—C26	123.8 (7)
C22—C21—C20	124.4 (6)	С28—С27—Н27	118.1
C22—C21—C26	118.0 (6)	С26—С27—Н27	118.1
C20—C21—C26	117.6 (6)	C25—C24—C23	120.6 (7)
C25—C26—C21	119.5 (7)	C25—C24—H24	119.7

C25—C26—C27	121.8 (7)	C23—C24—H24	1	19.7
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1…O1	0.86	1.95	2.612 (7)	133
N1—H1···Cl1 ⁱ	0.86	2.68	3.319 (6)	132
N2—H2···O2	0.86	1.93	2.598 (7)	134
N2—H2···Cl2 ⁱⁱ	0.86	2.84	3.472 (6)	132
Symmetry codes: (i) <i>x</i> , <i>y</i> +1, <i>z</i> ; (ii) <i>x</i> +1, <i>y</i>	, <i>Z</i> .			

